Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Mol Genet Genomics ; 299(1): 43, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598031

RESUMO

Phosphatidylserine (PS) is important for maintaining growth, cytoskeleton, and various functions in yeast; however, its role in stress responses is poorly understood. In Schizosaccharomyces pombe, the PS synthase deletion (pps1∆) mutant shows defects in growth, morphology, cytokinesis, actin cytoskeleton, and cell wall integrity, and these phenotypes are rescued by ethanolamine supplementation. Here, we evaluated the role of Pps1 in the salt stress response in S. pombe. We found that pps1∆ cells are sensitive to salt stresses such as KCl and CaCl2 even in the presence of ethanolamine. Loss of the functional cAMP-dependent protein kinase (git3∆ or pka1∆) or phospholipase B Plb1 (plb1∆) enhanced the salt stress-sensitive phenotype in pps1∆ cells. Green fluorescent protein (GFP)-Pps1 was localized at the plasma membrane and endoplasmic reticulum regardless of the stress conditions. In pka1∆ cells, GFP-Pps1 was accumulated around the nucleus under the KCl stress. Pka1 was localized in the nucleus and the cytoplasm under normal conditions and transferred from the nucleus to the cytoplasm under salt-stress conditions. Pka1 translocated from the nucleus to the cytoplasm during CaCl2 stress in the wild-type cells, while it remained localized in the nucleus in pps1∆ cells. Expression and phosphorylation of Pka1-GFP were not changed in pps1∆ cells. Our results demonstrate that Pps1 plays an important role in the salt stress response in S. pombe.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cloreto de Cálcio , Estresse Salino/genética , Etanolamina , Etanolaminas , Proteínas de Fluorescência Verde
2.
Microbiol Spectr ; 10(5): e0086222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036637

RESUMO

Invasive fungal infections are difficult to treat with limited drug options, mainly because fungi are eukaryotes and share many cellular mechanisms with the human host. Most current antifungal drugs are either fungistatic or highly toxic. Therefore, there is a critical need to identify important fungal specific drug targets for novel antifungal development. Numerous studies have shown the fungal phosphatidylserine (PS) biosynthetic pathway to be a potential target. It is synthesized from CDP-diacylglycerol and serine, and the fungal PS synthesis route is different from that in mammalian cells, in which preexisting phospholipids are utilized to produce PS in a base-exchange reaction. In this study, we utilized a Saccharomyces cerevisiae heterologous expression system to screen for inhibitors of Cryptococcus PS synthase Cho1, a fungi-specific enzyme essential for cell viability. We identified an anticancer compound, bleomycin, as a positive candidate that showed a phospholipid-dependent antifungal effect. Its inhibition on fungal growth can be restored by ethanolamine supplementation. Further exploration of the mechanism of action showed that bleomycin treatment damaged the mitochondrial membrane in yeast cells, leading to increased generation of reactive oxygen species (ROS), whereas supplementation with ethanolamine helped to rescue bleomycin-induced damage. Our results indicate that bleomycin does not specifically inhibit the PS synthase enzyme; however, it may affect phospholipid biosynthesis through disruption of mitochondrial function, namely, the synthesis of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which helps cells maintain membrane composition and functionality. IMPORTANCE Invasive fungal pathogens cause significant morbidity and mortality, with over 1.5 million deaths annually. Because fungi are eukaryotes that share much of their cellular machinery with the host, our armamentarium of antifungal drugs is highly limited, with only three classes of antifungal drugs available. Drug toxicity and emerging resistance have limited their use. Hence, targeting fungi-specific enzymes that are important for fungal survival, growth, or virulence poses a strategy for novel antifungal development. In this study, we developed a heterologous expression system to screen for chemical compounds with activity against Cryptococcus phosphatidylserine synthase, Cho1, a fungi-specific enzyme that is essential for viability in C. neoformans. We confirmed the feasibility of this screen method and identified a previously unexplored role of the anticancer compound bleomycin in disrupting mitochondrial function and inhibiting phospholipid synthesis.


Assuntos
Antifúngicos , Bleomicina , Cryptococcus neoformans , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Bleomicina/farmacologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Diglicerídeos de Citidina Difosfato/metabolismo , Etanolaminas/farmacologia , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
3.
Nat Commun ; 12(1): 6982, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848707

RESUMO

Phospholipids are the major components of the membrane in all type of cells and organelles. They also are critical for cell metabolism, signal transduction, the immune system and other critical cell functions. The biosynthesis of phospholipids is a complex multi-step process with high-energy intermediates. Several enzymes in different metabolic pathways are involved in the initial phospholipid synthesis and its subsequent conversion. While the "Kennedy pathway" is the main pathway in mammalian cells, in bacteria and lower eukaryotes the precursor CDP-DAG is used in the de novo pathway by CDP-DAG alcohol O-phosphatidyl transferases to synthetize the basic lipids. Here we present the high-resolution structures of phosphatidyl serine synthase from Methanocaldococcus jannaschii crystallized in four different states. Detailed structural and functional analysis of the different structures allowed us to identify the substrate binding site and show how CDP-DAG, serine and two essential metal ions are bound and oriented relative to each other. In close proximity to the substrate binding site, two anions were identified that appear to be highly important for the reaction. The structural findings were confirmed by functional activity assays and suggest a model for the catalytic mechanism of CDP-DAG alcohol O-phosphatidyl transferases, which synthetize the phospholipids essential for the cells.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Methanocaldococcus/enzimologia , Sítios de Ligação , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cristalografia por Raios X , Cistina Difosfato , Escherichia coli , Lipídeos de Membrana/química , Fosfatidilserinas , Fosfolipídeos , Fosfotransferases , Transferases
4.
Front Cell Infect Microbiol ; 11: 765266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004345

RESUMO

The fungal phosphatidylserine (PS) synthase, a membrane protein encoded by the CHO1 gene, is a potential drug target for pathogenic fungi, such as Candida albicans. However, both substrate-binding sites of C. albicans Cho1 have not been characterized. Cho1 has two substrates: cytidyldiphosphate-diacylglycerol (CDP-DAG) and serine. Previous studies identified a conserved CDP-alcohol phosphotransferase (CAPT) binding motif, which is present within Cho1. We tested the CAPT motif for its role in PS synthesis by mutating conserved residues using alanine substitution mutagenesis. PS synthase assays revealed that mutations in all but one conserved amino acid within the CAPT motif resulted in decreased Cho1 function. In contrast, there were no clear motifs in Cho1 for binding serine. Therefore, to identify the serine binding site, PS synthase sequences from three fungi were aligned with sequences of a similar enzyme, phosphatidylinositol (PI) synthase, from the same fungi. This revealed a motif that was unique to PS synthases. Using alanine substitution mutagenesis, we found that some of the residues in this motif are required for Cho1 function. Two alanine substitution mutants, L184A and R189A, exhibited contrasting impacts on PS synthase activity, and were characterized for their Michaelis-Menten kinetics. The L184A mutant displayed enhanced PS synthase activity and showed an increased Vmax. In contrast, R189A showed decreased PS synthase activity and increased Km for serine, suggesting that residue R189 is involved in serine binding. These results help to characterize PS synthase substrate binding, and should direct rational approaches for finding Cho1 inhibitors that may lead to better antifungals.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase , Candida albicans , Sítios de Ligação , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Fosfotransferases , Saccharomyces cerevisiae/metabolismo
5.
FEBS J ; 288(10): 3285-3299, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283454

RESUMO

Most phospholipids are synthesised in the endoplasmic reticulum and distributed to other cellular membranes. Although the vesicle transport contributes to the phospholipid distribution among the endomembrane system, exactly how phospholipids are transported to, from and between mitochondrial membranes remains unclear. To gain insights into phospholipid transport routes into mitochondria, we expressed the Escherichia coli phosphatidylserine (PS) synthase PssA in various membrane compartments with distinct membrane topologies in yeast cells lacking a sole PS synthase (Cho1). Interestingly, PssA could complement loss of Cho1 when targeted to the endoplasmic reticulum (ER), peroxisome, or lipid droplet membranes. Synthesised PS could be converted to phosphatidylethanolamine (PE) by Psd1, the mitochondrial PS decarboxylase, suggesting that phospholipids synthesised in the peroxisomes and low doses (LDs) can efficiently reach mitochondria. Furthermore, we found that PssA which has been integrated into the mitochondrial inner membrane (MIM) from the matrix side could partially complement the loss of Cho1. The PS synthesised in the MIM was also converted to PE, indicating that PS flops across the MIM to become PE. These findings expand our understanding of the intracellular phospholipid transport routes via mitochondria.


Assuntos
Proteínas de Bactérias/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Escherichia coli/genética , Membranas Intracelulares/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/deficiência , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Teste de Complementação Genética , Cinética , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peroxissomos/metabolismo , Fosfatidiletanolaminas/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transgenes
6.
Plant Cell Physiol ; 62(1): 66-79, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33141223

RESUMO

Salinity-induced lipid alterations have been reported in many plant species; however, how lipid biosynthesis and metabolism are regulated and how lipids work in plant salt tolerance are much less studied. Here, a constitutively much higher phosphatidylserine (PS) content in the plasma membrane (PM) was found in the euhalophyte Salicornia europaea than in Arabidopsis. A gene encoding PS synthase (PSS) was subsequently isolated from S. europaea, named SePSS, which was induced by salinity. Multiple alignments and phylogenetic analysis suggested that SePSS belongs to a base exchange-type PSS, which localises to the endoplasmic reticulum. Knockdown of SePSS in S. europaea suspension cells resulted in reduced PS content, decreased cell survival rate, and increased PM depolarization and K+ efflux under 400 or 800 mM NaCl. By contrast, the upregulation of SePSS leads to increased PS and phosphatidylethanolamine levels and enhanced salt tolerance in Arabidopsis, along with a lower accumulation of reactive oxygen species, less membrane injury, less PM depolarization and higher K+/Na+ in the transgenic lines than in wild-type (WT). These results suggest a positive correlation between PS levels and plant salt tolerance, and that SePSS participates in plant salt tolerance by regulating PS levels, hence PM potential and permeability, which help maintain ion homeostasis. Our work provides a potential strategy for improving plant growth under multiple stresses.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/fisiologia , Membrana Celular/fisiologia , Chenopodiaceae/enzimologia , Proteínas de Plantas/fisiologia , Arabidopsis , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Membrana Celular/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Chenopodiaceae/fisiologia , Retículo Endoplasmático/enzimologia , Técnicas de Silenciamento de Genes , Fosfatidilserinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Salino , Tolerância ao Sal , Alinhamento de Sequência
7.
mBio ; 11(2)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209681

RESUMO

The archaeal cytoplasmic membrane provides an anchor for many surface proteins. Recently, a novel membrane anchoring mechanism involving a peptidase, archaeosortase A (ArtA), and C-terminal lipid attachment of surface proteins was identified in the model archaeon Haloferax volcanii ArtA is required for optimal cell growth and morphogenesis, and the S-layer glycoprotein (SLG), the sole component of the H. volcanii cell wall, is one of the targets for this anchoring mechanism. However, how exactly ArtA function and regulation control cell growth and morphogenesis is still elusive. Here, we report that archaeal homologs to the bacterial phosphatidylserine synthase (PssA) and phosphatidylserine decarboxylase (PssD) are involved in ArtA-dependent protein maturation. Haloferax volcanii strains lacking either HvPssA or HvPssD exhibited motility, growth, and morphological phenotypes similar to those of an ΔartA mutant. Moreover, we showed a loss of covalent lipid attachment to SLG in the ΔhvpssA mutant and that proteolytic cleavage of the ArtA substrate HVO_0405 was blocked in the ΔhvpssA and ΔhvpssD mutant strains. Strikingly, ArtA, HvPssA, and HvPssD green fluorescent protein (GFP) fusions colocalized to the midcell position of H. volcanii cells, strongly supporting that they are involved in the same pathway. Finally, we have shown that the SLG is also recruited to the midcell before being secreted and lipid anchored at the cell outer surface. Collectively, our data suggest that haloarchaea use the midcell as the main surface processing hot spot for cell elongation, division, and shape determination.IMPORTANCE The subcellular organization of biochemical processes in space and time is still one of the most mysterious topics in archaeal cell biology. Despite the fact that haloarchaea largely rely on covalent lipid anchoring to coat the cell envelope, little is known about how cells coordinate de novo synthesis and about the insertion of this proteinaceous layer throughout the cell cycle. Here, we report the identification of two novel contributors to ArtA-dependent lipid-mediated protein anchoring to the cell surface, HvPssA and HvPssD. ArtA, HvPssA, and HvPssD, as well as SLG, showed midcell localization during growth and cytokinesis, indicating that haloarchaeal cells confine phospholipid processing in order to promote midcell elongation. Our findings have important implications for the biogenesis of the cell surface.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/enzimologia , Haloferax volcanii/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Fosfolipídeos/metabolismo , Proteínas Arqueais/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Haloferax volcanii/genética , Proteínas de Membrana/genética , Peptídeo Hidrolases/genética
8.
Curr Microbiol ; 77(5): 710-715, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31897665

RESUMO

Phosphatidylserine synthase (Pss) is involved in the metabolic pathway in phospholipid synthesis in different organisms. In this study, Pss expression in Vibrio parahaemolyticus was verified through liquid chromatography tandem-mass spectrometry. To analyze the characteristics of Pss, the recombinant Pss was overexpressed and purified from Escherichia coli. The optimum temperature and pH of Pss were 40 °C and 8, respectively. When reacting with divalent metal, Pss activity decreased. In addition, Pss could not only use cytidine diphosphate diacylglycerol (CDP-DAG, 16:0), but also CDP-DAG (18:1) as a substrate to produce cytidine 5'-monophosphate. Furthermore, the 3D structure of Pss was predicted, and the results revealed that histidine and lysine of the two HKD motifs were present in the catalytic site. Moreover, CDP-DAG (16:0) was docked with the Pss model. To investigate whether the two HKD motifs in Pss are important to its activity, site-directed mutagenesis of histidine was performed. The results revealed that the activities of both H131A and H352A were diminished. Little is known regarding the catalytic site of type I Pss. This is the first report on the biochemical characterization of Pss in V. parahaemolyticus.


Assuntos
Proteínas de Bactérias/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Vibrio parahaemolyticus/enzimologia , Proteínas de Bactérias/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cromatografia Líquida , Escherichia coli/genética , Histidina/genética , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Fosfolipídeos/metabolismo , Espectrometria de Massas em Tandem , Temperatura , Vibrio parahaemolyticus/genética
9.
Biotechnol Bioeng ; 117(3): 710-720, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31814106

RESUMO

To increase the growth of industrial strains under environmental stress, the Saccharomyces cerevisiae BY4741 salt-tolerant strain Y00 that tolerates 1.2 M NaCl was cultured through nitroguanidine mutagenesis. The metabolomics and transcription data of Y00 were compared with those of the wild-type strain BY4741. The comparison identified two genes related to salt stress tolerance, cds1 and cho1. Modular assembly of cds1 and cho1 redistributed the membrane phospholipid component and decreased the ratio of anionic-to-zwitterionic phospholipid in strain Y03 that showed the highest salt tolerance. Therefore, significantly increased membrane potential and membrane integrity helped strain Y03 to resist salt stress (1.2 M NaCl). This study provides an effective membrane engineering strategy to enhance salt stress tolerance.


Assuntos
Lipídeos de Membrana , Engenharia Metabólica/métodos , Fosfolipídeos , Saccharomyces cerevisiae , Tolerância ao Sal/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Metaboloma , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Nat Chem Biol ; 16(2): 197-205, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844304

RESUMO

Phospholipids, the most abundant membrane lipid components, are crucial in maintaining membrane structures and homeostasis for biofunctions. As a structurally diverse and tightly regulated system involved in multiple organelles, phospholipid metabolism is complicated to manipulate. Thus, repurposing phospholipids for lipid-derived chemical production remains unexplored. Herein, we develop a Saccharomyces cerevisiae platform for de novo production of oleoylethanolamide, a phospholipid derivative with promising pharmacological applications in ameliorating lipid dysfunction and neurobehavioral symptoms. Through deregulation of phospholipid metabolism, screening of biosynthetic enzymes, engineering of subcellular trafficking and process optimization, we could produce oleoylethanolamide at a titer of 8,115.7 µg l-1 and a yield on glucose of 405.8 µg g-1. Our work provides a proof-of-concept study for systemically repurposing phospholipid metabolism for conversion towards value-added biological chemicals, and this multi-faceted framework may shed light on tailoring phospholipid metabolism in other microbial hosts.


Assuntos
Endocanabinoides/biossíntese , Engenharia Metabólica/métodos , Ácidos Oleicos/biossíntese , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Acil Coenzima A/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Coenzima A Ligases/genética , Endocanabinoides/genética , Enzimas/genética , Enzimas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Microrganismos Geneticamente Modificados , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Ácidos Oleicos/genética , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Fosfolipídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Microbiol Immunol ; 63(3-4): 119-129, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30854712

RESUMO

Phosphatidylserine synthase (Pss) catalyzes phosphatidylserine synthesis, which is critical to synthesizing the component of cell membrane. However, few putative pss genes of bacteria have been studied. In this study, it was found that Vibrio parahaemolyticus, a common foodborne pathogen that causes human gastroenteritis, has a type I Pss with two HKD motifs and is a phospholipase D superfamily member. The transcriptional start site of pss was mapped through sequencing and was identified at -37 nucleotides upstream of the start codon. Pss mRNA was found to be expressed mainly during the exponential phase. In addition, the promoter was identified using a lux reporter assay and gel shift assay with an RNA polymerase. To analyze the catalytic activity, a soluble form of His6 -tagged recombinant Pss was overexpressed and purified from Escherichia coli. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry, it was found that Pss can catalyze cytidine diphosphate diacylglycerol and L-serine to form phosphatidylserine. Since Pss is conserved in vibrios, the current study can promote understanding the biosynthesis of phospholipid in Vibrio bacteria that might cause vibriosis. This is the first report of molecular characterization of the pss gene and identification of Pss enzyme activity in V. parahaemolyticus using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Membrana Celular/metabolismo , Vibrio parahaemolyticus/enzimologia , Vibrio parahaemolyticus/metabolismo , Diglicerídeos de Citidina Difosfato/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Fosfatidilserinas/biossíntese , Fosfolipase D/metabolismo , Serina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vibrio parahaemolyticus/genética
12.
PLoS Genet ; 15(1): e1007892, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703081

RESUMO

Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of ß (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of ß (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in ß (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of ß (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased ß (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Candida albicans/genética , Proteínas Fúngicas/genética , MAP Quinase Quinase Quinases/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Parede Celular/genética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Guanosina Trifosfato/genética , Humanos , Lectinas Tipo C/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , beta-Glucanas/química , beta-Glucanas/metabolismo , Proteína cdc42 de Ligação ao GTP/genética
13.
PLoS Genet ; 15(1): e1007911, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30633741

RESUMO

The ability to resist copper toxicity is important for microbial pathogens to survive attack by innate immune cells. A sur7Δ mutant of the fungal pathogen Candida albicans exhibits decreased virulence that correlates with increased sensitivity to copper, as well as defects in other stress responses and morphogenesis. Previous studies indicated that copper kills sur7Δ cells by a mechanism distinct from the known resistance pathways involving the Crp1 copper exporter or the Cup1 metallothionein. Since Sur7 resides in punctate plasma membrane domains known as MCC/eisosomes, we examined overexpression of SUR7 and found that it rescued the copper sensitivity of a mutant that fails to form MCC/eisosomes (pil1Δ lsp1Δ), indicating that these domains act to facilitate Sur7 function. Genetic screening identified new copper-sensitive mutants, the strongest of which were similar to sur7Δ in having altered plasma membranes due to defects in membrane trafficking, cortical actin, and morphogenesis (rvs161Δ, rvs167Δ, and arp2Δ arp3Δ). Consistent with the mutants having altered plasma membrane organization, they were all more readily permeabilized by copper, which is known to bind phosphatidylserine and phosphatidylethanolamine and cause membrane damage. Although these phospholipids are normally localized to the intracellular leaflet of the plasma membrane, their exposure on the surface of the copper-sensitive mutants was indicated by increased susceptibility to membrane damaging agents that bind to these phospholipids. Increased copper sensitivity was also detected for a drs2Δ mutant, which lacks a phospholipid flippase that is involved in maintaining phospholipid asymmetry. Copper binds phosphatidylserine with very high affinity, and deleting CHO1 to prevent phosphatidylserine synthesis rescued the copper sensitivity of sur7Δ cells, confirming a major role for phosphatidylserine in copper sensitivity. These results highlight how proper plasma membrane architecture protects fungal pathogens from copper and attack by the immune system, thereby opening up new avenues for therapeutic intervention.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Candidíase/genética , Cobre/química , Metalotioneína/genética , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/patogenicidade , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Membrana Celular , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Cobre/uso terapêutico , Endocitose/efeitos dos fármacos , Humanos , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/patogenicidade , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Proteínas de Membrana/genética , Morfogênese/efeitos dos fármacos , Morfogênese/genética
14.
J Biol Chem ; 294(7): 2329-2339, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602568

RESUMO

Phospholipids are an integral part of the cellular membrane structure and can be produced by a de novo biosynthetic pathway and, alternatively, by the Kennedy pathway. Studies in several yeast species have shown that the phospholipid phosphatidylserine (PS) is synthesized from CDP-diacylglycerol and serine, a route that is different from its synthesis in mammalian cells, involving a base-exchange reaction from preexisting phospholipids. Fungal-specific PS synthesis has been shown to play an important role in fungal virulence and has been proposed as an attractive drug target. However, PS synthase, which catalyzes this reaction, has not been studied in the human fungal pathogen Cryptococcus neoformans Here, we identified and characterized the PS synthase homolog (Cn Cho1) in this fungus. Heterologous expression of Cn CHO1 in a Saccharomyces cerevisiae cho1Δ mutant rescued the mutant's growth defect in the absence of ethanolamine supplementation. Moreover, an Sc cho1Δ mutant expressing Cn CHO1 had PS synthase activity, confirming that the Cn CHO1 encodes PS synthase. We also found that PS synthase in C. neoformans is localized to the endoplasmic reticulum and that it is essential for mitochondrial function and cell viability. Of note, its deficiency could not be complemented by ethanolamine or choline supplementation for the synthesis of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) via the Kennedy pathway. These findings improve our understanding of phospholipid synthesis in a pathogenic fungus and indicate that PS synthase may be a useful target for antifungal drugs.


Assuntos
Cryptococcus neoformans/metabolismo , Retículo Endoplasmático/metabolismo , Viabilidade Microbiana , Fosfatidilserinas/biossíntese , Animais , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Cryptococcus neoformans/genética , Diglicerídeos de Citidina Difosfato/genética , Diglicerídeos de Citidina Difosfato/metabolismo , Retículo Endoplasmático/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Fosfatidilserinas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Small GTPases ; 10(6): 449-455, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-28613115

RESUMO

The budding yeast Saccharomyces cerevisiae undergoes polarized cell growth, which is established in association with actin polarization. Rho1, one of the Rho-type GTPases in S. cerevisiae, is crucial for maintaining polarized cell growth and actin polarization and controlling the downstream signaling pathway, the Pkc1-Mpk1 MAP kinase cascade, through a physical interaction with Pkc1, the sole protein kinase C in this yeast. The Pkc1-Mpk1 MAP kinase cascade is important for the repolarization of actin under heat shock-stressed conditions. We recently reported that phosphatidylserine (PS), a membrane phospholipid component, played a pivotal role in the physical interaction between Rho1 and Pkc1 as well as the activation of the Pkc1-Mpk1 MAP kinase cascade. However, it currently remains unclear whether PS is involved in actin polarization by regulating the physical interaction between Rho1 and Pkc1. We herein demonstrated that the C1 domain of Pkc1, which is responsible for the interaction with Rho1, was crucial for Rho1-regulated actin polarization. We also found that actin repolarization under heat shock-stressed conditions was impaired in a mutant defective in CHO1 encoding PS synthase. These results suggest that PS contributes to actin polarization in which Rho1 and Pkc1 play a crucial role.


Assuntos
Citoesqueleto de Actina/metabolismo , Fosfatidilserinas/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Mutação , Proteína Quinase C/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico
16.
Adv Biol Regul ; 67: 49-58, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827025

RESUMO

The yeast Saccharomyces cerevisiae serves as a model eukaryote to elucidate the regulation of lipid metabolism. In exponentially growing yeast, a diverse set of membrane lipids are synthesized from the precursor phosphatidate via the liponucleotide intermediate CDP-diacylglycerol. As cells exhaust nutrients and progress into the stationary phase, phosphatidate is channeled via diacylglycerol to the synthesis of triacylglycerol. The CHO1-encoded phosphatidylserine synthase, which catalyzes the committed step in membrane phospholipid synthesis via CDP-diacylglycerol, and the PAH1-encoded phosphatidate phosphatase, which catalyzes the committed step in triacylglycerol synthesis are regulated throughout cell growth by genetic and biochemical mechanisms to control the balanced synthesis of membrane phospholipids and triacylglycerol. The loss of phosphatidate phosphatase activity (e.g., pah1Δ mutation) increases the level of phosphatidate and its conversion to membrane phospholipids by inducing Cho1 expression and phosphatidylserine synthase activity. The regulation of the CHO1 expression is mediated through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. Consequently, phosphatidate phosphatase activity regulates phospholipid synthesis through the transcriptional regulation of the phosphatidylserine synthase enzyme.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Fosfolipídeos/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Fosfatidato Fosfatase/biossíntese , Fosfatidato Fosfatase/genética , Fosfolipídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
J Biol Chem ; 292(32): 13230-13242, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28673963

RESUMO

The PAH1-encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae, exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1-encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1Δ mutant is induced through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UASINO mutation suppressed pah1Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1-encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Fosfatidato Fosfatase/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosfatidato Fosfatase/química , Fosfatidato Fosfatase/genética , Fosfolipídeos/metabolismo , Regiões Promotoras Genéticas , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Elementos de Resposta , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
18.
FEMS Yeast Res ; 17(2)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158422

RESUMO

Phosphatidylserine (PS) synthase (Cho1p) and the PS decarboxylase enzymes (Psd1p and Psd2p), which synthesize PS and phosphatidylethanolamine (PE), respectively, are crucial for Candida albicans virulence. Mutations that disrupt these enzymes compromise virulence. These enzymes are part of the cytidine diphosphate-diacylglycerol pathway (i.e. de novo pathway) for phospholipid synthesis. Understanding how losses of PS and/or PE synthesis pathways affect the phospholipidome of Candida is important for fully understanding how these enzymes impact virulence. The cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ mutations cause similar changes in levels of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol and PS. However, only slight changes were seen in PE and phosphatidylcholine (PC). This finding suggests that the alternative mechanism for making PE and PC, the Kennedy pathway, can compensate for loss of the de novo synthesis pathway. Candida albicans Cho1p, the lipid biosynthetic enzyme with the most potential as a drug target, has been biochemically characterized, and analysis of its substrate specificity and kinetics reveal that these are similar to those previously published for Saccharomyces cerevisiae Cho1p.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Candida albicans/enzimologia , Candida albicans/metabolismo , Fosfolipídeos/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Candida albicans/genética , Deleção de Genes , Cinética , Especificidade por Substrato
19.
J Lipid Res ; 58(4): 742-751, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28154205

RESUMO

Protein kinase C in Saccharomyces cerevisiae, i.e., Pkc1, is an enzyme that plays an important role in signal transduction and the regulation of lipid metabolic enzymes. Pkc1 is structurally similar to its counterparts in higher eukaryotes, but its requirement of phosphatidylserine (PS) and diacylglycerol (DAG) for catalytic activity has been unclear. In this work, we examined the role of these lipids in Pkc1 activity with protein and peptide substrates. In agreement with previous findings, yeast Pkc1 did not require PS and DAG for its activity on the peptide substrates derived from lipid metabolic proteins such as Pah1 [phosphatidate (PA) phosphatase], Nem1 (PA phosphatase phosphatase), and Spo7 (protein phosphatase regulatory subunit). However, the lipids were required for Pkc1 activity on the protein substrates Pah1, Nem1, and Spo7. Compared with DAG, PS had a greater effect on Pkc1 activity, and its dose-dependent interaction with the protein kinase was shown by the liposome binding assay. The Pkc1-mediated degradation of Pah1 was attenuated in the cho1Δ mutant, which is deficient in PS synthase, supporting the notion that the phospholipid regulates Pkc1 activity in vivo.


Assuntos
Diglicerídeos/metabolismo , Metabolismo dos Lipídeos/genética , Fosfatidato Fosfatase/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Fosfatidato Fosfatase/genética , Fosfatidilserinas/metabolismo , Fosforilação , Proteína Quinase C/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Triglicerídeos/metabolismo
20.
J Lipid Res ; 58(3): 553-562, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28119445

RESUMO

Close contacts between organelles, often called membrane contact sites (MCSs), are regions where lipids are exchanged between organelles. Here, we identify a novel mechanism by which cells promote phospholipid exchange at MCSs. Previous studies have shown that phosphatidylserine (PS) synthase activity is highly enriched in portions of the endoplasmic reticulum (ER) in contact with mitochondria. The objective of this study was to determine whether this enrichment promotes PS transport out of the ER. We found that PS transport to mitochondria was more efficient when PS synthase was fused to a protein in the ER at ER-mitochondria contacts than when it was fused to a protein in all portions of the ER. Inefficient PS transport to mitochondria was corrected by increasing tethering between these organelles. PS transport to endosomes was similarly enhanced by PS production in regions of the ER in contact with endosomes. Together, these findings indicate that PS production at MCSs promotes PS transport out of the ER and suggest that phospholipid production at MCSs may be a general mechanism of channeling lipids to specific cellular compartments.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos/genética , Fosfatidilserinas/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Bactérias/genética , Transporte Biológico/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Membrana Celular/química , Membrana Celular/enzimologia , Retículo Endoplasmático/enzimologia , Endossomos/metabolismo , Escherichia coli/enzimologia , Glicosiltransferases/genética , Lipogênese/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...